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Abstract

The purpose of this paper is to present new analytical derivations to de-
scribe the emission and detection statistics of neutrons and photons generated
in and emitted from fissile samples, with absorption included. The results of
the analytical approach are compared with and validated by corresponding
Monte Carlo simulations. The joint statistics of the generated and detected
neutrons and photons is also described. The analytical model described in
this paper accounts for absorption and detection, thus extending the model
presented in previous studies. By using this new, improved model, one can
investigate the relative feasibilities of measuring neutrons, gamma photons or
combinations thereof, for the analysis of a specific fissile sample. In fact, we
show that for larger mass samples photon absorption in the sample strongly
decreases the multiplicity of emitted photons, whereas this is not the case
for neutrons. The results suggest that although photons have a larger initial
(source) multiplication, neutrons might be more favourable to measure in the
case of large samples because of the increasing self-shielding effect for gamma
photons.
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1. Introduction

In non-destructive assay of nuclear materials, the statistics of the num-
ber distribution of neutrons and gamma rays emitted by fissile samples is of
high importance. The multiplicities of neutrons [1] and photons [2] generated
in fissile samples with internal multiplication have been investigated in the
past. Investigations of the effect of including absorption in the model have
also recently been made. The implicit master equations are the starting point
for the generating functions of the neutron and photon number distribution.
These equations have also been used in the past for calculating factorial mo-
ments. For practical reasons, factorial moments are usually only interesting
up to the third or fourth order. Using multiplicity and coincidence measure-
ments, one can deduce the sample mass and isotopic composition of a certain
sample.

A characteristics of the factorial moments is that, experimentally, they are
difficult to measure beyond the third moment (triples), whereas from an ana-
lytical or calculational point of view, the high order moments beyond triples
become increasingly long and tedious to derive by hand. The present work
describes a development in the latter area where calculations of the number
distribution of fissile samples also yields results for the factorial moments.

In contrast to the factorial moments, the probabilities P(n) and F(n)
of emitting n neutrons or gamma photons respectively, are interesting up
to large values of n. The necessary number of terms of P(n) or F(n) that
need to be calculated is determined from the condition that the cumulative
probability should be sufficiently close to unity. In some cases the vale of n
can exceed 50 for both neutrons and photons.

Including neutron and photon absorption in the model affects the statis-
tics of the number distribution in several ways. For neutrons, the process or
radiative absorption eliminate them from the fission chain and causes the ob-
servable (leaked) neutrons to reduce in number. For photons the dependence
is more involved, because both the absorbtion of neutrons and the photons
themselves will affect the photon distribution. All of these effects will vary
with the main parameter of the sample being investigated, i.e. the sample
mass. An increase in mass affects the probability of both induced fission, as
well as absorption of both neutrons and gamma photons for large samples in
the few kg mass range.

The process of detection allows us to observe the statistics of emission
from a given sample. There is always a certain detector efficiency involved in



the process of detection. One way of modelling this effect was investigated
in [3], in which the detectors are assumed to be embedded into the sample.
This model is not realistic since the detector contributes to the absorption
inside the sample. In particular, a 100% detector efficiency means that the
detector material completely suppresses that of the sample and hence the
measurement yields information on the detector properties only (pure ab-
sorption without multiplication). In this work we will present a different way
of accounting for absorption and detection, with the latter only pertaining
to the particles that leaked out from the sample. In this way the detection
process can be described more realistically. The results of the analytical
calculations are compared to those from Monte Carlo simulations.

2. Theory

The master equations, or Chapman-Kolmogorov equations, for the gen-
erating functions of the number of neutrons and photons in a sample with
both spontaneous and induced fission have been derived in references [1, 2].
In both cases, it is assumed in these calculations that the probability of a first
collision before escape of the sample of an arbitrary neutron, p, is known.
That model is here expanded to account for absorption and detection, and
the probabilities for these events are included explicitly in the equations.
With these extensions, the equations give the detection statistics in an an-
alytical way, and can be used to plan experiments, or as an indicator when
comparing to numerical results usually obtained using Monte Carlo codes.

2.1. Neutron distributions

In earlier models of the statistics of neutron and photon emission from
a fissile sample[l, 2, 4], the absorption of neutrons and gamma photons was
not accounted for. It was assumed that each neutron has a probability p of
inducing fission, or failing to do so and hence escaping with a probability
1—np.

The probability generating functions (PGFs) h(z) and H(z) of p;(n) and
P(n) describing the number of neutrons generated by one initial neutron or
one initial neutron event (spontaneous fission), are defined as

h(z)=> pi(n)z" and H(z) =Y P(n)z", (1)



respectively. These are used in the coupled backward master equations for
neutrons [1]:

h(z) = (1 —p)z + pg;[h(2)] (2)
and
H(z) = g5[h(2)]. (3)
Here,

() = Yopm)z and (=) = 3 piln)" (4)

stand for the generating functions of the number of neutrons generated in
a spontaneous or an induced fission, respectively. For finding the statistics
of the particles one needs to observe that p;(n) and P(n) are the Taylor
expansion coefficients of h(z) and H(z), respectively [4]:

1 d"h(z
pi(n) = n! dz(" )

1 d"H(z)
n!  dzn

and P(n) =

(5)

z=0 2=0

As can be noted, the expressions are evaluated at z = 0, in contrast to
taking them at z = 1, which is the case when searching for the factorial
moments of the neutrons generated in spontaneous or induced fission vy, vy.
In order to have compact expressions, modified moments were introduced

in [4], which differ in value from the traditional nuclear factorial moments,
defined as:

d*qa(h)| o)
dh™ @

. (W) = a1 (O] =Van 3 a=s,1, (6)

where p;(0) is the probability of having zero neutrons generated when start-
ing with one initial neutron. This initial probability needs to be found since
higher order terms of p;(n) and P(n) all depend on it, as well as it appears
also in the modified factorial moments. Note can be made of the fact that
this probability is highly dependent on the sample mass, and whether or not
absorption and detection are included into the model. One expects this prob-
ability to increase with the inclusion of absorption and detection probability.
Absorption can remove the initial neutron or all neutrons generated in the
short chains started by the first neutron, likewise, one can end up with zero
neutrons detected even if the single neutron started a long chain of fissions,
if the detection probability is low.



In the neutron probability balance equation, the event of absorption can
be included into the fission distribution, because when looking at the progeny
of neutrons it is the same as a fission event with zero neutrons generated.
Therefore one can include the absorption by a suitable increase of the first
collision probability from a value p to p’. The new first collision probability
then accounts for both fission and absorption, and the “reverse” probability
1 — p/ now properly describes the probability for a neutron to escape the
sample and become available for external detectors to register. To maintain
normalization, the probabilities p;(n) for n > 0 will need to be decreased
according to the following formula:

~ P —0p p
pi(n) P p,p() (7)

The generating function of p;(n), Eq (4), will also change accordingly into
¢i(z). The first master equation (2) will now read:

h(z) = (1= p)z + p'alh(2)], (8)

and describes the leaked out neutrons. In the numerical work, the values of
p, p’ and the probabilities p;(n) are taken from the code MCNP-PoliMi [5],
which contains extensive nuclear data tables. This will have the advantage
that in the comparisons with Monte Carlo simulations, it is assured that
the same nuclear data are used in both the simulations and the analytical
calculations.

The process of detection can be added in a straightforward manner by
considering only the neutrons that have already leaked out of the sample,
since those are the ones available for detection by external detectors. Using
a detection probability for neutrons, €, we can create a generating function
(z) of the binary probability distribution (i.e. either zero or one neutron)
of the number of neutrons detected per neutron emitted from the sample:

e(z) =ez+ (1 —e). 9)

The new generating functions that also include the detection process are
given by:
ha(z) = hle(2)] Ha(z) = He(2)]. (10)
The derivatives needed for finding the factorial moments and the number
distribution change in a simple way
d"hq(z)  d"h(z)
den den
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For factorial moments the full change is

Ugpn = (€)" - Up. (12)

This is due to the factorial moments (multiplicites) being evaluated at z = 1.
For the number distribution on the other hand, the evaluation at z = 0
resulted in modified moments which depend on the probability p;(0). This
probability changes when absorption and detection in accounted for, so even
if the derivatives change formally in the same manner as for the factorial
moments, the modified moments will also obtain new numerical values.

In our previous work [4], i.e. with no absorption and detection, the mod-
ified moments were given by

d"qu(h)
dh™

- = Z]fln)(h)} — A(n)[pl(o)] =Tan ; Q=S5 (13)

In the case of detection, py(0) will replace p;(0), which is solved from the
N-th order polynomial

pa(0) = (1=p) (1 =€)+ G [pa(0)] = (1=p)(L=)+p' Y Bi(n)[pa(0)]". (14)

n=0

where N is the largest neutron multiplicity in an induced fission, which is set
to N = 8 in the case of plutonium.

Using these properties we can now derive the detection statistics from the
Taylor expansion:

nl  dzn

id"Hd(z)
n! dzn

pa(n) =

and Py(n) = (15)

z=0 2=0

The terms in the probability distribution can now be calculated recur-
sively because the starting master equation is in implicit form. This fact
means that the probabilities P(n) will occur in the expressions for P(m),
where m > n. This makes it computationally favourable to use the symbolic
computation code Mathematica [6], which was used to derive the higher order
terms.

The analytic model allows us to readily analyze the dependence of the
measured quantities on simple parameters: the probability to induce fission,
which is a parameter that increases with mass, and can be calculated from the



mass of the sample, provided the density is known; the absorption probability
which also depends on sample size and composition; and finally the detection
efficiency, which can be changed to reflect what type of detector is used,
such as fast scintillation detectors or large arrays of helium tubes in form of
multiplicity counters.

2.2. Photon distributions

As in the case of neutrons, a set of coupled backwards master equations
have earlier been derived and used to find the statistics of the generated
photons [2; 4]. The starting equations were:

9(2) = (1 —p) +pri(z)qg(2)] (16)
and
G(2) = rs(2)qs[g(2)], (17)

where ¢g(z) and G(z) are the probability generating functions of fi(n) and
F(n), describing the number of generated photons when starting with one
neutron or one source event, respectively:

9(z) =Y Az . G() =) F(n)=" (18)

One needs also to use the nuclear data for the distribution of photons gen-
erated in one induced or spontaneous fission respectively, defined as:

ri(z) =Y filn)2" , ri(z) =) fu(n)2". (19)

When performing the differentiations to find the probability distributions
fi(n) and F(n), one will, just as in the case of neutrons, encounter modified
moments defined as:

d"ro(z)
dzn

=n! fo(n) = lon; a=s,i. (20)
z=0

In the calculation of these modified moments, which refer to that of the pho-
tons, also the modified moments of neutrons will appear, due to the structure
of the equations (16) and (17). Physically, this is due to the fact that the in-
ternal multiplication of photons is only due to the neutron branching, hence



the corresponding neutron moments will also appear. However, these neu-
tron moments will not be the same as the ones that are derived for the “pure”
neutron distribution, equations (2) and (3). The reason is that for the calcu-
lation of these modified neutron moments that appear in the gamma photon
distributions, the factor p;(0) in Eq. (6) will be replaced by the factor f;(0)
in the case of photons in the corresponding expressions.

To further extend this model to account for detection statistics instead
of merely the number of generated particles [4], one needs to include both
absorption and the process of detection, which takes place with a certain
probability, referred to often as the detection efficiency, e.

In the case of neutrons, the absorption was taken into account by modify-
ing the probability distribution p;(n) and changing the first collision proba-
bility from p to p’. For photons the situation will be slightly different, because
leakage and absorption of a neutron will both lead to zero generated photons.
Hence the parameter p in (16) remains that of the probability to induce a
fission. The generating function g;(z), will still be used, since with zero neu-
trons generated, the branching process will stop, and no more photons can
be generated.

Gamma absorption will be accounted for by the probability [, that de-
scribes the leakage probability for one single photon, likewise (1 —1,) is the
probability for a created photon to be absorbed and not escape the sam-
ple. The gamma capture will be accounted for by an additional generating
function £,(z),

0 (2) =lyz+ (1 —1). (21)

Here ¢,(z) is the generating function of the binary probability distribution
of gamma photons leaving the sample per initial photon. Due to the simple
form of this relationship, the factorial moments of the leaked out neutrons
are simply the factorial moments for the generated photons times a leakage
factor:

ﬁl,n = (lv)n ’ ﬁn (22)
The master equations for the leaked out photons are then given as:
9(2) = glt,(2)],  Giz) = G, (2)]. (23)

To separate the statistics of the photons that undergo detection compared
to the larger numbers of photons that escape the sample, an extra equation
is added that describes the probability for one photon to undergo detection



or not. The detection efficiency, €, is used:
ey(2) =2+ (1 —¢). (24)

The probability distribution can now be extracted by using the master
equations

9a(2) = 9[- {e4(2)}] = (1 = p) + pri(2)@ilga()] (25)
and

Ga(2) = G[l{e,(2)}] = ro(2)aslga(2)]. (26)

Since one evaluates the expressions at z = 0 to get the probability dis-
tribution, modified moments are created as earlier. In the case of detected
photons these modified moments will depend on f;(0) instead on f;(0), i.e.
the probability of having zero neutrons detected when starting with one ini-
tial neutron in the sample. This quantity can be found by setting z = 0 in
Eq. (25), and finding the root of the finite degree polynomial that arises:

fa(0) = (1 = p) + prslls{e5(0)}] ¢s[fa(0)] =

—(l-p)+p (Z 5(n) [M%(@H”) S et

The modified moments using this new initial term are defined as follows when
we include absorption and detection into the model:

d"ro[l{ey(2)} . '
[ len’y ] 2=0 = Hd ans a=S§1, (28>
dqaiggd) = TVg.om; o =s,i. (29)
dgd z=0

The factors are straightforward to calculate, but lead to expressions that
contain sums that have an increasing number of terms for higher order mo-
ments. The formulae obtained for the number distributions, both in the case
of neutrons and photons, contain several quantities that are based on nu-
clear physics constants (fission neutron and gamma photon multiplicities),
weighted by factors depending on the first collision probability, absorption
probabilities etc. Among those quantities one also finds the modified mo-
ments of 7,, and [,,. When calculating higher order terms and getting
longer expressions one notes that 7,,, becomes zero for n > 8, due to the fact



that fission multiplicities are zero for so large numbers. In the same manner
I, vanishes for a larger n. Considerations like these make the otherwise
rapidly growing expressions more manageable, however the use of computer
software to handle the numerical evaluations remains a necessity.

A further fact to be mentioned concerns the formal equivalence between
the probabilities P(n) and the corresponding n-th order factorial moments
of the neutrons and photons generated in the sample, as noted in Ref. [4].
In [4] it was noted that the factorial moments of the number of neutrons and
photons generated in the sample could be obtained from the probabilities by
replacing the modified moments with the ordinary moments which are based
on the pure nuclear data. It is seen from the expressions derived in this paper
that the same formal equivalence exists between the probabilities Py(n) of
the detected neutrons and photons and the corresponding factorial moments.
Thus by finding the probability distribution of the detected particles, one
receives the multiplicities as a limiting simplified case up to the same high
order as the distribution was determined. This order is generally much higher
than the third or fourth, up to which the factorial moments are usually
computed.

2.8. Joint distributions

In a more complete description of emission of neutrons and gamma pho-
tons from fissile samples, one can extend the description to the joint statistics
of neutrons and photons. For this one also would need the joint number dis-
tributions ps(n, m) and p;(n,m) of n neutrons and m photons emitted in a
spontaneous and an induced fission, respectively. Unfortunately there are
no data for such joint distributions in the literature. Generally, the gener-
ation of neutrons and photons is considered to be independent, hence the
above distributions are just products of the individual distributions. The
corresponding PGF’s are defined as

QS(Za y) = Z Zps (TL, m)znym ) Qi(za y) = Z sz (TL, m)znym. (30)

If b1 (n,m) is the probability to obtain n neutrons and m photons gener-
ated by one initial neutron, a backward-type master equation can be readily
derived by considering the two mutually exclusive events of not having or
having a first collision before leaking out:

bi(n,m) = (1—p) dp1 Omo+

10



0o 00 k
pY Y ikl Y [T b1(ni,mi). (31)

k=0 [=0 ni+--+ng=n i=1
mi+4--+mr=m—I

Defining the generating function
C(Z>y) = Zzbl(n> m)znym’ (32)

from (31) one obtains

C(Zvy) = (1 —p)Z—qui[C(Z,y),y]. (33>

In the same manner an equation for the probability generating function
B(n,m) of the probability to have n neutrons and m photons generated when
starting with one source event, can be derived as:

C(z,y) = ¢sle(z,v), y]. (34)

Also for the joint distributions, from the practical point of view it is more
interesting to determine the distribution of detected particles. Using the
same concepts as before, one defines the generating functions of the leakage
probability of a single neutron and photon, respectively:

bo(2) =l z+ (1 —=1,),
{ L) =Lzt (1-1), (33)

where [,, and [, are the leakage probabilities of neutrons and photons, respec-
tively. Actually, in the earlier notations, [, is simply equal to 1 — p/. The
values of these parameters will naturally vary with the main parameter of
the investigated sample, which is the sample mass. Detection can then be
included in the same manner by using the earlier defined generating functions

{ en(2) =z + (1 =€), (36)

e y) =62+ (1 —¢),

with €, and e, being the detection efficiencies of neutrons and photons re-
spectively. The coupled master equations for the detection statistics are then
given as:

ca(z,y) = (1 =p)aien(2)} + pailca(z,y), 6{e,(9)}];

Cd(za y) = QS[Cd(Zv y)? g‘/{gﬁ(y)}]

11
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The individual distributions and corresponding defining equations for the
neutrons or photons can now be found as special cases: y = 1 in the Egs.
(37) gives the neutron distributions equivalent of Eqs. (10), while setting
z = 1 in the Egs. (37) gives Eqgs. (25), (26). The sought joint probability
distributions are calculated as the n, m-th derivatives of ¢4(z,y) and Cy(z,y)
with regard to z and y respectively.

3. Results

The number distributions were calculated for neutrons and photons sep-
arately, as well as for joint distributions, for plutonium metal spheres of
varying mass. The values obtained were compared to simulations with the
code MCNP-PoliMi [2, 5, 7]. To this end, MCNP-PoliMi had to be modified
to supply the necessary tallies. The values of the collision probability p, and
that of the nuclear physics constants such as the fission parameters pg(n),
fi(n), etc. were taken from MCNP-PoliMi runs for the analytical model.
The probability to induce fission varies with the mass of the sample. The
values of p are shown in Table 1 below for the three samples for which we
have performed calculations.

Sample | Mass (kg) | p

1 0.335 0.0852
2 2.680 0.1678
3 9.047 0.2461

Table 1: Probability to induce fission, p, for one neutron depending on the mass
of the sample. The metal samples have a composition of 80 wt% Pu-239 and
20 wt-% Pu-240, and a density of 15.9 g/cc.

The analytical model in the case of generated particles (no absorption
included), has earlier been validated against Monte Carlo simulations [4] with
very good agreement. In MCNP-PoliMi a spherical encompassing idealized
detector was used to measure all outcoming particles without reflecting them
back to the sample to change the statistics. Thus the result obtained was
the statistics of the number of emitted particles.

As can be seen in Fig. 1, for photons there is a very evident effect of self-
shielding. The probabilities of high numbers of photons escaping the sample
are reduced significantly when absorption is taken into account. The results
show that for realistic samples, which might be investigated with typical
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Figure 1: Comparison of the number distribution for neutrons and photons, with and
without accounting for absorption. Colored markers are without absorption and black
lines with absorption included. For neutrons the lines coincide, while for photons a major
change is seen.

non-destructive assay (NDA) techniques, the initial advantage of having high
photon multiplicities diminishes, because the internal absorption of photons
is much greater than that for neutrons in materials of high atomic numbers.

Figure 2 shows the good agreement between the analytical model and
the numerical simulations when looking at the emitted particles. Photon
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Figure 2: Comparison between numerical simulations and analytical results where the
effect of absorption is accounted for. As can be seen, the agreement is good in general. At
low probabilities, i.e. with higher numbers of particles, the Monte Carlo data are difficult
to compare to, due to poor statistics caused by the finite number of histories run.

detectors can still be very useful if we consider a scenario where the sample
is heavily screened with low Z materials, and/or materials with high neutron
absorption cross sections, which do not screen gamma photons. In such
cases photon detectors can be advantageous compared to neutron detectors.
Different types of shielding can be accounted for in the model by correctly
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changing the detection efficiency or alternatively increasing the absorption
probability which might be easier in the case of photons.

o Number distribution of neutrons with detection

—e— 3359 emitted
—=—2680g emitted
—4—9047g emitted |
—— Detection included

Probability, P(n)

0 5 10 15 20 25 30
Number of neutrons
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T 107
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107
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Figure 3: Probability distributions with detection included. The shape of the curves will
be dependent on the detector efficiency €., which was taken as 10% for neutrons and 20%

for photons in these plots.

Photons detected
0 Neutrons detected

10000000
1000000 |

100000 |

10000 |

Photons
detected

Neutrons detected

Figure 4: The left hand side graph shows data from the analytical model where we have
assumed a larger detection efficiency for neutrons compared to photons, e.g. a sample
shielded with a material of high atomic mass. The right hand side graph is from MCNP-
PoliMi, showing the detection statistics for a detector setup using six scintillator detectors.

In the case of gamma photons one can note the somewhat unexpected
result that it is more likely to detect relatively high multiplicities, such as
triples and quadruples, for a lighter sample than for a heavy one. The reason
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is that, although the total amount of generated photons is higher for the
heavier samples, the self-shielding effect counteracts this. The fast growing
self-shielding (with increasing mass) constitutes of course a disadvantage.
Note that these probabilities are per source event, and in a sample of higher
mass the number of spontaneous fissions will be higher.

The effect of the detection process in the model, so that the distribution
shows the number of detected particles rather than the emitted particles, is
shown in Fig. 3. The change of the distributions is directly linked to the
detection efficiency, and the lower the detection efficiency, the more difficult
it is to see higher order multiplicities which is visible in the figures which
compare with the distribution of emitted particles.

Using the joint statistics and multiple detections not only of the same
particle but also of different particles, Fig. 4 shows that a combined detection
of one neutron and one photon, can be much more frequent than the doublet
of one of them. Using the joint statistics and applying realistic detector
efficiencies, one can use the analytical model to decide in a fast and relatively
easy manner whether both types of particles should be detected, and if so,
which combined factorial moments should be measured for best statistics.

4. Conclusions

Using proper application of symbolic computation, it has been demon-
strated in previous work that high order terms of the number distribution
can be derived and evaluated. This approach has now been used to incor-
porate also absorption and detection into the modelling of the probability
distributions of neutrons and photons in a fissile sample.

The formal equivalence between the number distribution and factorial
moments is also kept, meaning that factorial moments of very high orders
can be easily calculated as limiting simplified evaluations of the formulae
derived. The modified moments occurring in these expressions can all be
readily calculated based only on nuclear data and characteristics such as
sample mass, and detection efficiency.

The quantitative results show a good agreement with MCNP-PoliMi sim-
ulations. As can be expected, the inclusion of absorption does not have a
significant effect on the neutrons; on the other hand, gamma photons are
heavily attenuated. This has a considerable effect on the statistics of the
emitted photons, whereas the neutron statistics is not much affected. Ac-
counting for the process of detection by using detection efficiencies changes
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the statistics further. These studies are useful in giving indications as to what
type of particle to focus on for assessing the sample with greatest accuracy.

Further, the model has been extended to be able to handle joint statistics
of both neutrons and photons. Using joint moments adds to the diversity of
the experimental methods, and can enhance the identification and detection
of samples. The calculations again supply indications on how to design the
measurement to get maximum efficiency. Using joint statistics might lead
to shorter measuring times, or to get further data about the sample without
having to use quadruplets.

5. Acknowledgments

The work of the Swedish authors was supported by the Swedish Nuclear
Power Inspectorate. The work of the U.S. author was supported in part by
the U.S. Department of Energy National Nuclear Security Administration
Office of Non-proliferation Research Engineering NA-22. The Oak Ridge
National Laboratory is managed and operated for the U. S. Department of
Energy by UT-Battelle, LLC, under contract DE-AC05-000R22725.

References
[1] K. Bohnel, Nucl. Sci. Eng. 90 (1985) 75.
[2] I. Pazsit, S.A. Pozzi, Nucl. Instr. Methods A 555, Vol. 1-2. (2005) 340.
[3] M. Lu, T. Teichmann, Nucl. Instr. and Meth. A. 313 (1992) 471.

[4] A. Enqvist, I. Pézsit, S.A. Pozzi, Nucl. Instr. Methods A, 566, pp. 598
(2006).

[5] S.A. Pozzi, E. Padovani, M. Marseguerra, Nucl. Instr. and Meth. A 513
(2003) 550.

[6] Wolfram Research Inc., Mathematica, Version 5.2, Champaign, IL
(2005).

[7] S.A. Pozzi, J.A. Mullens, J.T. Mihalczo, Nucl. Instr. and Meth. A 524
(2004) 92.

17



